Ядерная физика

Машиностроительное черчение
Выполнение чертежей деталей
Разьемные соединения
Соединение шпилькой, трубное
Эскизирование деталей
Фотодело
Модели цифровых
фотоаппаратов
Трехцветный мир (RGB)
Зеркальные цифровые
фотоаппараты
Софт печати для
цифровой камеры
Обработка фотографий
Получение качественных
фотографий
Обработка изображений
Инстументы обработки
изображений
Использование фильтров
для обработки фото
Работа с обьектами и текстом
Фильтры Adobe Illustrator
Форматы документов,
публикация в Web
Искусство
История искусства
Ренессанс
Проторенессанс
Искусство Китая художники
дикой природы
средневековая философия
Китайские пейзажисты
Информатика
Характеристики и принципы
работы накопителей
Разрешение аппаратных
конфликтов
Электротехника
Задачи курсовой
Математика
Примеры решения задач
контрольной работы
Вычисление площадей
Вычисление длин дуг
Тройные и двойные интегралы
при решении задач
Вычисление объемов с помощью
тройных интегралов
Метод замены переменной
Площадь криволинейной трапеции
Двойные интегралы в полярных
координатах
Геометрические приложения
криволинейных интегралов
Интегрирование по частям

Деление ядра Выделение энергии из природных радиоактивных ядер происходит слишком медленно, чтобы использовать их как источники энергии для практических целей. Однако значительно более быстрое высвобождение энергии реализуется в процессе деления ядра

Основные компоненты ядерного реактора На рисунке приведена схема основных компонентов ядерного реактора. Газовый или жидкий теплоноситель прокачивается в реактор с помощью циркуляционного насоса и проходит через топливные элементы. Эти элементы состоят из урана в металлической, карбидной или оксидной форме, заключенного в оболочку из циркония, магниевого сплава или нержавеющей стали

Быстрые реакторы с газовым охлаждением. Альтернативой натриевому охлаждению быстрых реакторов является использование газового теплоносителя (углекислый газ или гелий). Однако в этом случае активная зона реактора должна быть больше, так как газы существенно проигрывают натрию как теплоносители.

Виды контуров теплоносителя в ядерном реакторе С тех пор как первый ядерный реактор с воздушным охлаждением был построен под теннисным кортом стадиона Чикагского университета в декабре 1942 г., было спроектировано огромное множество ядерных реакторов и многие из них построены. Во все проекты был включен контур теплоносителя; основные компоненты таких контуров и типичные контуры, используемые в наиболее распространенных энергетических ядерных реакторах, описаны в гл. 2. Конечно, все контуры охлаждения ядерного реактора должны включать активную зону, устройство для прокачки теплоносителя через активную зону и устройство для отбора тепла от теплоносителя в целях поддержания непрерывного охлаждения реактора и одновременно в целях выработки полезной энергии (в энергетических реакторах).

Температура в центре реакторного топлива Пример. Выведите выражение для расчета температуры центра таблетки реакторного топлива, предполагая, что внутреннее энерговыделение равномерно в пространстве, а теплопроводность не зависит от температуры. Твердая таблетка из двуоксида урана имеет линейную плотность энерговыделения 45 кВт/м и температуру поверхности 600 0С. Теплопроводность двуоксида урана 2,7 Вт/(м К). Какова температура центра топливной таблетки?

Кипящий легководный реактор Реактор с кипящей водой, подобно PWR, оборудован многочисленными средствами для охлаждения активной зоны на случай неожиданного снижения давления в реакторе или потери теплоносителя. Типичная система аварийного охлаждения активной зоны BWR

Быстрые реакторы - размножители с натриевым охлаждением Различные рабочие режимы быстрых реакторов-размножителей с жидкометаллическим охлаждением (LMFBR), можно охарактеризовать следующим образом. Нормальный рабочий режим и переходные режимы. Натрий в первом контуре всегда поддерживается в расплавленном состоянии, что достигается путем обогрева всего контура электрическими нагревателями сопротивления, намотанными на все трубопроводы. Это позволяет поддерживать натрий при температуре не ниже 1000С (тогда как температура его плавления равна 980С). Большой объем расплавленного натрия достаточно медленно реагирует на тепловые возмущения. Таким образом, требуется некоторое время, чтобы теплоноситель разогрелся до рабочей температуры.

Аварии с потерей теплоносителя: некоторые примеры Аварии на ядерных электростанциях всегда вызывают большой интерес, а иногда и серьезную тревогу общественности.

Быстрые реакторы с жидкометаллическим охлаждением Авария с плавлением топлива на реакторе EBR-1. Американский первый экспериментальный реактор-бридер (EBR-1) известен как реактор, впервые использовавшийся для производства электроэнергии. К его сооружению приступили в 1948 г., а выработка электроэнергии началась в декабре 1951 года. Проектная тепловая мощность реактора составляла 1 МВт, а электрическая мощность 200 кВт. Конечно, производство электроэнергии носило, скорее, демонстрационный, чем экономический характер.

Прогнозируемые тяжелые аварии В гл. 4 и 5 обсуждены обстоятельства, при которых могли бы произойти аварии с потерей теплоносителя и конструкторские решения реактора для предотвращения последствий этих чрезвычайно нежелательных событий. В гл. 5 рассмотрены некоторые случаи нарушения охлаждения в реакторах с последующим перегревом и повреждением топлива. Многие из них были предусмотрены при разработке реактора, но часть все же вышла за рамки, заложенные в проекте. В большинстве случаев установка на «защиту в глубину» при проектировании реактора оказалась эффективной в ограничении общественных последствий аварии. Тем не менее важно рассмотреть, что может произойти при чрезвычайно тяжелых авариях, характеризующихся, как правило, наступлением частичного или полного расплавления топлива в реакторе.

Повреждение защитной оболочки Авария на АЭС Three Mile Island показала важность защитной оболочки реактора для локализации очень тяжелой аварии и превращения ее в такую, которая имела бы очень малое воздействие на здоровье людей. Защитная оболочка является важным барьером в многоуровневой стратегии защиты, воплощенной в проектах реакторов, особенно для охлаждаемых водой и жидким металлом. Имеется большое число исследований, посвященных целостности защитных оболочек, особенно для PWR.

Охлаждение и захоронение радиоактивных отходов Эксплуатация атомных электростанций приводит к появлению ценных веществ и побочных продуктов, которые являются радиоактивными. Эта радиоактивность сохраняется после прекращения ядерной реакции деления. Обращаться с этими материалами следует с осторожностью, и поэтому долговременное хранение радиоактивных веществ, получаемых в реакторах, является составной частью при разработке и эксплуатации в процессах топливного цикла атомных электростанций.

Охлаждение бака для хранения высокоактивных жидких отходов Пример. Жидкие отходы с высоким уровнем излучения хранятся в емкости диаметром D = 6 м. Уровень жидкости в емкости составляет 5 м. Тепло, выделяемое при распаде продуктов деления, отводится водой, циркулирующей по змеевику из нержавеющей стали с внешним диаметром 5 см. Змеевик погружен в жидкие отходы. Вода попадает в змеевик при температуре 20 и покидает при 250С. Жидкие отходы за счет распада продуктов деления выделяют тепло с интенсивностью 14 кВт/м3. Температура отходов должна составлять не более 350С для минимизации коррозии.

Термоядерные реакторы Прежде чем термоядерный реактор станет реальностью после получения демонстрационной реакции, ему, так же как и ядерному реактору, предстоит долгий путь развития. Давайте посмотрим, каким бы мог быть такой реактор.

Внутреннее облучение В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от естественных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом.

Ядерные взрывы За последние 40 лет каждый из нас подвергался облучению от радиоактивных осадков, которые образовались в результате ядерных взрывов. Речь идет не о тех радиоактивных осадках, которые выпали после бомбардировки Хиросимы и Нагасаки в 1945 году, а об осадках, связанных с испытанием ядерного оружия в атмосфере.

Генетические последствия облучения Изучение генетических последствий облучения связано с еще большими трудностями, чем в случае рака. Во-первых, очень мало известно о том, какие повреждения возникают в генетическом аппарате человека при облучении; во-вторых, полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений; и, в-третьих, как и в случае рака, эти дефекты невозможно отличить от тех, которые возникли совсем по другим причинам.

На главную