Математика решение задач контрольной работы

Машиностроительное черчение
Выполнение чертежей деталей
Разьемные соединения
Соединение шпилькой, трубное
Эскизирование деталей
Фотодело
Модели цифровых
фотоаппаратов
Трехцветный мир (RGB)
Зеркальные цифровые
фотоаппараты
Софт печати для
цифровой камеры
Обработка фотографий
Получение качественных
фотографий
Обработка изображений
Инстументы обработки
изображений
Использование фильтров
для обработки фото
Работа с обьектами и текстом
Фильтры Adobe Illustrator
Форматы документов,
публикация в Web
Искусство
История искусства
Ренессанс
Проторенессанс
Искусство Китая художники
дикой природы
средневековая философия
Китайские пейзажисты
Информатика
Характеристики и принципы
работы накопителей
Разрешение аппаратных
конфликтов
Электротехника
Задачи курсовой
Математика
Примеры решения задач
контрольной работы
Вычисление площадей
Вычисление длин дуг
Тройные и двойные интегралы
при решении задач
Вычисление объемов с помощью
тройных интегралов
Метод замены переменной
Площадь криволинейной трапеции
Двойные интегралы в полярных
координатах
Геометрические приложения
криволинейных интегралов
Интегрирование по частям

Задача 3. 1) Исследовать на экстремум функцию

 .

Решение. Находим стационарные точки.

Решение последней системы дает 4 стационарные точки:

.

Находим частные производные второго порядка:

Исследуем каждую стационарную точку.

1) В точке Так как  и , то в этой точке функция имеет минимум.

2) В точке Так как  и , то в этой точке функция имеет максимум.

3) В точке Так как , то в этой точке нет экстремума.

4) В точке Так как , то в этой точке нет экстремума.

2) Найти наибольшее и наименьшее значение функции   в замкнутом треугольнике АОВ, ограниченном осями координат и прямой  (рис. 8).

Решение. Найдем стационарные точки.

Решая систему

находим стационарную точку . Эта точка лежит внутри области. Вычислим значение функции в этой точке.

Граница заданной области состоит из отрезка ОА оси Ох, отрезка ОВ оси Оу и отрезка АВ. Определим наибольшее и наименьшее значение функции  на каждом из этих трех участков. На отрезке ОА  а . При  функция  есть функция одной независимой переменной х. Находим наибольшее и наименьшее значение этой функции на отрезке .

;  – стационарная точка. .

Вычислим значения функции на концах отрезка ОА, то есть в точках О и А. .

На отрезке ОВ  и . При  имеем . Находим наибольшее и наименьшее значение этой функции  от переменной у на отрезке . ; – стационарная точка. .

Вычислим значения функции  на концах отрезка ОВ, то есть в точках О и В. . Исследуем теперь отрезок АВ. Уравнение прямой АВ: . Подставив это выражение для у в заданную функцию , получим  или . Определим наибольшее и наименьшее значение этой функции на отрезке . ;  – стационарная точка. .

Значения функции в точках А и В найдены ранее. Сравнивая полученные результаты, заключаем, что наибольшее значение заданная функция   в заданной замкнутой области достигает в точке , а наименьшее значение – в стационарной точке . Таким образом,

  и .

На главную