Задачи курсовой по электротехнике Математика История искусства Выполнение чертежей деталей

Расчет электрических цепей переменного и постоянного тока

Частотные характеристики последовательного колебательного контура

Рассмотрим частотные характеристики цепи при резонансе. В случае, когда на последовательную цепь воздействует источник синусоидального напряжения с частотой w, меняющейся от 0 до ¥, параметры цепи, а именно ее реактивное и полное сопротивления, меняются, что вызовет соответствующие изменения тока и падений напряжения на отдельных участках цепи.

Построим функции названных выше сопротивлений в одних координатных осях (рис.2.17).

Исходя из построений (рис.2.17), можно заключить, что в дорезонансной области частот (0; wo) преобладает емкостной характер нагрузки, а послерезонансной области (wo; ¥) – индуктивный, и в точке резонанса (wо) реактивное сопротивление равно нулю, характер нагрузки активный. На рис.2.18 представлены зависимости падений напряжения, тока и фазы последовательного колебательного контура от частоты.

Рис.2.17. Зависимости сопротивлений цепи от частоты w

Прямоугольный контур с током в однородном магнитном поле Рассмотрим прямоугольную плоскую рамку с током, помещенную в однородное магнитное поле

Рис.2.18. Кривые изменений напряжений, тока и фазы
последовательного колебательного контура от частоты

На нулевой частоте (для источника постоянного ЭДС) индуктивность заменяется короткозамкнутым проводником, а емкость - обрывом; на бесконечной частоте свойства указанных элементов меняются местами, то есть индуктивность становится обрывом, а емкость - короткозамкнутым проводником.

Значения функции j(w) не существуют при w = 0 и w = ¥.

Оценим влияние параметров цепи на форму резонансной кривой тока. Решение этого вопроса начнем с уже известной нам функции

, с которой сделаем следующие преобразования:

.

Используя полученное выражение для входного сопротивления z, определим ток

  52(2.43)

где Io – максимальное значение тока в цепи при резонансе.

Рис.2.19. Резонансные кривые: Q3 > Q2 > Q1

Для удобства построение будем вести в относительных единицах (график зависимости см. на рис.2.19):

.

Параллельное соединение элементов R, L, C; проводимости

Рассмотрим параллельное соединение разнородных элементов
R, L, C.

Рис.2.20. Схема параллельного соединения элементов R, L, C

Пусть на вход цепи подано напряжение u = Umsin(wt+ju), тогда по первому закону Кирхгофа

.

Комплексное изображение входного напряжения

.

Для определения комплекса общего тока найдем его составляющие

   

тогда комплекс общего тока

.  53 (2.44)

Построим векторную диаграмму для параллельного соединения (рис.2.21).

Пусть φu < 0, φu - φI = j > 0, j - опережающий, характер нагрузки активно-индуктивный.

Выражение в круглых скобках (2.44) имеет размерность 1/Ом или См (симменс) и носит название комплексной проводимости цепи

  , 54(2.45)

где y – модуль комплексной проводимости, а j – угол сдвига фаз между током и напряжением.

Рис.2.21. Векторная диаграмма для параллельного соединения разнородных элементов

Комплексная амплитуда общего тока

 . 55(2.46)

Её модуль

.

Её фаза

;

.

Мгновенное значение общего тока

i = Imsin(wt + φu – j).

Под комплексной проводимостью любой цепи понимается величина, обратная ее полному комплексному сопротивлению,

 , 56(2.47)

где g – активная проводимость данной цепи;

b – результирующая реактивная проводимость.

,  57(2.48)

где bL и bC – индуктивная и емкостная проводимости соответственно.

Понятие проводимости приобретает особый смысл в том случае, если ветвь содержит активные и реактивные элементы. На ветви, изображенной на рис.2.22, определим ее активную и реактивную проводимости:

Рис.2.22. Участок цепи с активно-индуктивным сопротивлением

  . 58(2.49)

Из векторной диаграммы (рис.2.21) можно выделить треугольник токов (рис. 2.23).

Рис.2.23. Векторный треугольник токов

Разделив стороны векторного треугольника токов на вектор напряжения, получим скалярный треугольник проводимостей (рис. 2.24).

Рис.2.24. Скалярный треугольник проводимостей

Резонанс токов Резонансный режим, возникающий при параллельном соединении R, L, C, называется резонансом токов. В отличие от рассмотренного ранее режима резонанса напряжений, данный режим не столь однозначен.

Рассчитаем мощность произвольного приемника, представленного в виде пассивного двухполюсника.

Коэффициент мощности Наибольшие действующие значения напряжения и тока, допускаемые для генераторов и трансформаторов, производящих и, соответственно, преобразующих электрическую энергию, зависят от их конструкции, а наибольшая мощность, которую они могут развивать, не подвергаясь опасности быть поврежденными, определяется произведением этих значений. Поэтому рациональное использование электрических машин и трансформаторов может быть достигнуто лишь в том случае, когда приемники электрической энергии обладают высоким коэффициентом мощности cos


На главную